
## Chemistry C13 - The Earth's Atmosphere Page 1

### The modern atmosphere

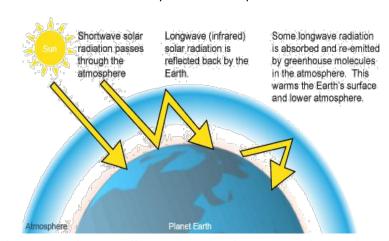
For 200 million years, the proportions of gases in the atmosphere have been the same as they are today:

- about four-fifths (approximately 80 %) nitrogen
- about one-fifth (approximately 20 %) oxygen
- small proportions of various other gases, including  $CO_2$ , water vapour and noble gases.



#### Climate Scientists

Based on peer-reviewed evidence, many scientists believe that human activities will cause the temperature of the Earth's atmosphere to increase at the surface and that this will result in global climate change.


However, it is difficult to model such complex systems as global climate change. This leads to simplified models, speculation and opinions presented in the media that may be based on only parts of the evidence and which may be biased.

### Greenhouse gases

Greenhouse gases include:

Water  $(H_2O)$  Carbon dioxide  $(CO_2)$  Methane  $(CH_4)$ 

Without them, the Earth would be too cold to sustain life, but too much of them can cause Earth's atmosphere to heat up and lead to extreme weather.



Greenhouse gases like  ${\it CO}_2$  allow **shortwave** radiation to easily pass through the atmosphere

They reach the ground, where they begin to heat the Earth's surface.

This transfers the radiation into longer wavelengths.

The  $CO_2$  then absorbs some of the outgoing **longwave** radiation, causing the atmosphere to warm up, and the radiation not to escape.

Too much CO2 means less longwave radiation escapes, causing global warming.

### The Earth's early atmosphere

It is hard to say exactly how the atmosphere has developed because it has taken 4.6 billion years.

One theory suggests that the first billion years of the Earth's existence included intense volcanic activity. This released large amounts of carbon dioxide, and nitrogen and a little methane  $(CH_4)$  and ammonia  $(NH_3)$ . It may also have released the water vapour that later formed the oceans. There was little or no oxygen.

This would make Earth's early atmosphere similar to Venus or Mars today.

### Changes to the early atmosphere

As Earth cooled, water vapour condensed and formed oceans.

 $CO_2$  dissolved in the oceans which formed **precipitates** (solids). Some of it was used by sea creatures to make shells, and these later formed **rocks** like **limestone**. **Fossil fuel** formation also trapped  $CO_2$ .

2.7 billion years ago, algae began producing  $O_2$  by photosynthesis, which also reduced the  $CO_2$  in the atmosphere. Plants then evolved, followed by  $O_2$  increasing so animals evolved.

Photosynthesis  $6CO_2 + 6H_2O \longrightarrow C_6H_{12}O_6 + 6O_2$ carbon dioxide + water  $\longrightarrow$  glucose + oxygen

## Chemistry C13 - The Earth's Atmosphere Page 2

### Global Climate Change

An increase in average global temperature is a major cause of climate change. This may lead to:



Global weather patterns changing (leading to flooding in some areas and drought in others)



Extreme weather events (e.g. hurricanes)



Ice caps and glaciers melting



Sea-levels rising, causing flooding in coastal regions



Desertification

Reduced yields of crops

#### Human Activities

CO2 levels are increased by:

- Combustion of fossil fuels
- Deforestation

CH4 levels are increased by:

- Farming cattle
- Growing rice
- Use of landfill

### Atmospheric pollutants from fuels

| Pollutant                                       | Cause                                                                       | Problem                                   |
|-------------------------------------------------|-----------------------------------------------------------------------------|-------------------------------------------|
| Carbon dioxide<br>(CO <sub>2</sub> )            | Complete combustion (sufficient oxygen)                                     | Global warming                            |
| Carbon monoxide<br>(CO)                         | Incomplete combustion (insufficient oxygen)                                 | Toxic gas.<br>Colourless and odourless    |
| Sulfur dioxide<br>(SO <sub>2</sub> )            | Oxidation of sulfur impurities in fossil fuels                              | Acid rain & respiratory problems (asthma) |
| Oxides of nitrogen<br>(NO and NO <sub>2</sub> ) | Oxidation of nitrogen in air<br>at high temperatures in a<br>vehicle engine |                                           |
| Carbon particulates<br>(unburnt hydrocarbons)   | Burning diesel                                                              | Global dimming,<br>health problems        |

Carbon footprint = the total amount of carbon dioxide and other greenhouse gases emitted over the full life cycle of a product, service or event. One small part of a life cycle assessment.

#### It includes:

- extracting raw materials
- production
- use
- disposal
- transport at any point in its life cycle

Carbon footprints can be reduced by reducing emission of CO2 and CH4 either:

• Directly, using green energy sources that don't emit CO2 e.g. solar power and wind power, instead of burning fossil fuels.

OR

**Indirectly**, e.g. by insulating a building so it requires less heating, using local materials and products that don't get transported as far.

This will then require less fossil fuels to be burned for electricity or transport.

# Know your formulas

Carbon monoxide

 $CO_2$ Carbon dioxide

> $O_2$ oxygen

nitrogen

NH3 ammonia

 $CH_{\lambda}$ methane